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ABSTRACT 

We analyze muon- and electron-lepton number nonconservation 

in a pure V-A gauge model. The rates for u'ey, ul-teee, and 

KL+u'e are computed for this model. We find that for a 

reasonable range of neutral heavy lepton mass these rates 

are in accord with, but not extremely small compared to, 

present experimental bounds. We comment on the nonorthoqonality 

of " and v e ~!J ' and interesting features of the L- decays. 
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Some time ago we discussed a six quark model' with only 

left-handed currents. This is a minimal extension of the 

"standard" four quark Weinberg-Salam SU(2) x U(1) gauge model2 

which allows CP nonconservation to be incorporated. The 

alternatives are right-handed currents 3 or proliferation of 

Hiqqs bosons. 4 Such a model leads to approximate superweak 

(or microweak5) predictions for CP violation. The model also 

includes a pair of leptons (L O,L-), both massive, and coupled 

to the W's through a left-handed current, in order to cancel 

anomalies. The L- can he tentatively identified with the heavy 

lepton of mass '2 GeV reported at SPEAR' and corroborated at 

DORIS. 7 This model gives the same predications for atomic physics 

parity violation as the Feinberg-Salam model. 
The general form of the leptonic current is 

J li = Qu(1-Y5)U~n (1) 

where 1, = (e-,u-,L-) and II n = (v1,v2,Lo). U is a general 

unitary matrix. The massless neutrino produced in association 
7 

with the electron, we, is given by ~U1112~IU12~2 ve = Ullvl 

+ u12v2; mutatis mutandis for the muon neutrino v 

hJ21.2+lu2212 
, li: 

"1-l = U21”1 + u22v2 - The known limits on hadron- 

lepton universality, ue universality, and nonorthoqonality between 

V 
e 

and v : IJ 

<gv * > = *U 
LJ 

-'13 23 I- u I 
4u,, 12+ IU12 I2 4J21 12+ lu 12’ 

13 '23 (2) 

22 

imply that 
s 

I" * 13’231 <o’Q55 
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is nonzero, there are 

several interesting consequences. 

" e f y Decay 

The diagram which contributes in leading order to the 

decay u+ey is shown in Fig. (1). Tnle have calculated 

amplitude to be 9 
this 

=F5 * M(n+e+y) = ie - - 
v"~ 32n2 

E U23U13eflaB (l+Y5) LlE”q’ (3) 

where The branching ratio of iJ+ey to n+e; v 
e IJ 

is then 

B (u-e+v) = &f ~~~~~~~~~ I2 . 

If we take IUz3U1312 to be o.3x1o-2 (see below) 

mW 2 60 GeV, we find 

mLO 
2 12 GeV % 30 GeV for B = lo-' . 

(4) 

and 

Such a value for B can be tested very soon by the experiment 

in progress at SIN. 10 The angular distribution of the decay 

of the polarized muon is given by (l+cose), where 8 is the 

angle between the direction of the electron momentum and the 

direction of the muon polarization. This is due to the left- 

handedness of our weak currents. 

i-I + eee: 

In the SU(2) x U(l) gauge theory, there are three classes 

of diagrams contributing to this process: the photon exchange, 

the Z exchange, and the W+W- exchange: the calculation involved 

is very similar to that of the process s+d+u+E previously 

performed.L1 The final result is 
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M (u+eeZ) (5) 

to leading order in Rn E. From this we calculate a branching 

ratio 

10g2EIu;3u231 2 
(6) 

For m 
LO 

= 10 GeV, mW = 60 GeV, and ~~~~~~~~ = 0.055 , this 

branching ratio is equal to 0.3 x 10-l', safely smaller than 
-9 the experimental limit 6 x 10 . It is interesting to observe 

that although this result depends sensitively on the parameter 

of the theory, the ratio 

r (veee) = % log2E 
r (wey) (7) 

varies only slowly as one changes m 
LO * 

For the values of 

mLO 
and mW given, this ratio is equal to 0.06, somewhat larger 

than the level %(cY,/TI) which one might, a priori, expect. The 

reason for this is the log $ term in the Z-exchancre 

contribution to 11 -c eee . 

Decay of L- 

If the neutral lepton Lo associated with the charged lepton 

L- of mass 2 GeV is indeed as massive as 10 GeV there are 

several unusual effects. Decays of L- such as e-geLO are 

forbidden. We have (summing over neutrino and antineutrino 

species) 
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2 
r(L--*eG) = GF 

192*3 L- 
(m )5(/"31/2+Iu3212) 

m -5 
= r(u-*e+v+;) $.- 

( 1 
( I” 31/2+ I” 3212). (8) 

!J 
This rate is suppressed considerably by the smallness of the 

mixing angles: taking ( IU3112+JU32/2 ) '1o-2 , we find 

T(L-+ewVy) ?r 10-l' sec. 

The decays L- + e-y and u-y are expected. 12 We have 

r u,-+=y) 
r(i-y) = (%Jp+l; 2 ($r;u23,-2 . 

ccmbirlinq Eqs. 03) and (91, we deduce that 

r(L-+d = r c~+~v) 1 
r (L-+-G) r(u+G) Iu23/2~~u31~2+~u32~2) 

zz 10 

if I'(V+eY)/I-(u*u;) is about 10 -', and (u~~( z Iu32 

Neutrino Reactions 

(9) 

-5 
(10) 

We predict a non-zero coupling of the muon neutrino to 

e- and L-. For sufficiently high incident neutrino energies 

where the mass differences may be neglected, we get 

u(u~N+P-X) : u(vuN-+e-X) : u(u~N+L-X) 

= (l-lu2312)2 : /u23u;3j2 : I 2 
"23% * (11) 

The second reaction gives the upper bound for IU23U;3/2 which 

wo estimate8 as no bigger than 20 . -2 
The third reaction is very 

interesting, because the L- tracks may be observable in bubble 

chamber experiments. This model does not give rise to a large high y 

anomaly in the reaction T N + p+x. 
P 
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In the version of the model presently discussed, there 

is no neutrino oscillation. However, it is possible to endow 

v1 and v 2 with finite, nondegenerate masses, in the model: in 

that case, there will be neutrino oscillations,as discussed in 

Ref. 8. 

Other Phenomena 

There are several classical effects 13 discussed in the 

literature associated with muon number nonconservation, such 

as P-N + e-N and Ue + eF , but these effects are too small 

to have a chance for detection in this model. The decays 

KL * !Je (or ec), or KL + IT e ; are also difficult to detect; 

for the former, we have 11 
in the free quark approximation 

G 2 

M(KL+& ,x $ c 
* 

sine C cosec “13’23 fK[?(+)e-,pll 

(12) 

where f K is the kaon decay constant and p' is the kaon four- 

momentum. This leads to the prediction in this model that 

r (KL+d 2 

r(KLW) 2 Iu13u;31 c 1o-2 . (13) 

EXperimentally,BR(K,+U~) < 2.0x10-', a bound five times lower 

than the one on BR(K~+UF). 

NOTE ADDED: After the submission of this work, we received 

preprints by S. Glashow and H. Fritzsch on 

matters. 
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FIGURE CAPTION 

One loop diagram contribution to 

u+e+yviaL 0 - 



e 

Fig. 1 


